Some Properties of Solutions of Double Stochastic Differential Equations

C. Tudor ${ }^{*}$ and M. Tudor ${ }^{\ddagger}$

Abstract

The paper deals with double stochastic differential equations. Existence and uniqueness are obtained under a Hölder-type hypothesis.

The convergence in probability of the successive approximations in the Hölder norm and the existence of a weak solution for continuous coefficients are also proved.

Under an additional independence hypothesis, the mean square convergence of fractional step approximations is shown. This last result is used in order to deduce a comparison result and as a consequence the existence of a strong solution in the case when the "double "noise is additive.

Finally, a counterexample which shows that the comparison result does not work for double noise depending on the state is given.

1 Introduction

The multiple stochastic integral is introduced by Meyer [10] for martingales as differentials. The concept allows to consider the associated stochastic equations (see [18]). We refer to these equations as multiple stochastic equations. Such stochastic equations include the Itô equations, integro-differential and as well some classes of Volterra equations.

[^0]In [18] we considered double stochastic equations under the Lipschitz condition and we addressed the problem of convergence of some approximation schemes.
In the present paper we consider double Itô equations with the Lipschitz condition replaced by a Hölder-type one.
We obtain the existence and uniqueness of the strong solution and, by using an exponential Doob type inequality for stochastic integrals that are not martingales, we deduce the convergence in probability (in the Hölder norm) of the successive approximations.
By means of the standard procedure (Skorohod representation of the weak convergence) the existence of a weak solution is shown for continuous coefficients.
Next, under an independence assumption, we show the convergence of the fractional step approximations to the unique solution of the equation.
Such approximations are used if other more traditional methods are not easy to apply, especially for numerical treatment, qualitative properties (as positivity, comparison, etc.).
The fractional step (or splitting up) method is used in Rascanu and Tudor [13] for finite dimensional Itô equations, in Belopol'skaya and Nagolkina [2], Bensoussan-Glowinsky and Rascanu [3], Goncharuk and Kotelenez [6], for different classes of stochastic partial equations.
We also use the splitting up method in order to obtain a comparison result for double stochastic equations with additive "double" noise and in particular we derive the existence of strong solution for continuous and bounded double drifts.
Finally, we give a counterexample which shows that the comparison result fails if the double diffusion coefficient is state dependent.

2 Existence and Uniqueness of Strong Solutions

Let $\left(\Omega, \mathcal{F}, P,\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}\right)$ be a complete filtered probability space and $\left\{W_{t}\right\}_{0 \leq t \leq T}$, $\left\{\tilde{W}_{t}\right\}_{0 \leq t \leq T}$ be \mathcal{F}_{t}-Brownian motions.
Define

$$
\begin{gathered}
C_{2}(t)=\left\{\left(t_{1}, t_{2}\right): 0 \leq t_{1} \leq t_{2} \leq t\right\} \\
C_{2}(a, b)=\left\{\left(t_{1}, t_{2}\right): a \leq t_{1} \leq t_{2} \leq b\right\}
\end{gathered}
$$

Let $F(t, x), G(t, x):[0, T] \times R \longrightarrow R, \tilde{F}\left(t_{1}, t_{2}, x\right), \tilde{G}\left(t_{1}, t_{2}, x\right): C_{2}(T) \times R \longrightarrow$ R be measurable functions and ξ be a \mathcal{F}_{0}-measurable random variable.
Define $L S=\left\{\alpha: R_{+} \longrightarrow R_{+}: \alpha\right.$ is strictly increasing, continuous, concave, and $\left.\int_{0+\frac{1}{1}}^{\alpha(u)}=\infty\right\}$.
Obvious $\alpha_{1}(u)=L u, L>0, \alpha_{2}(u)=x|\log x|^{1-\varepsilon}, \alpha_{3}(u)=\left.x|\log x||\log | \log x\right|^{1-\varepsilon}$, $0<\varepsilon<1$, belong to $L S$ and α_{2}, α_{3} are not Lipschitz. Also if $\alpha_{1}, \alpha_{2} \in L S$, $c_{1}, c_{2} \geq 0, c_{1}+c_{2}>0$, then $c_{1} \alpha_{1}+c_{2} \alpha_{2} \in L S$.
We consider the following double stochastic differential equation

$$
\begin{gather*}
X_{t}=\xi+\int_{0}^{t} F\left(s, X_{s}\right) d s+\int_{0}^{t} G\left(s, X_{s}\right) d W_{s}+ \\
\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, X_{s_{1}}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T \tag{2.1}
\end{gather*}
$$

We introduce the following hypotheses on the initial data and the coefficients of (2.1).
$\left(H_{1}\right)$ (Growth condition on F, G): there exists a constant $K>0$ such that

$$
|F(t, x)|^{2}+|G(t, x)|^{2} \leq K\left(1+|x|^{2}\right), \forall t \in[0, T], x \in R
$$

(\tilde{H}_{1}) (Growth condition on $\left.\tilde{F}, \tilde{G}\right)$: there exists a constant $\tilde{K}>0$ such that for all $\left(s_{1}, s_{2}\right) \in C_{2}(T), x \in R$,

$$
\left|\tilde{F}\left(s_{1}, s_{2},, x\right)\right|^{2}+\left|\tilde{G}\left(s_{1}, s_{2}, x\right)\right|^{2} \leq \tilde{K}\left(1+|x|^{2}\right)
$$

$\left(H_{2}\right)$ (Hölder-type condition on $\left.F, G\right):$ there exist $\alpha \in L S$ such that for all $t \in[0, T], x, y \in R$,

$$
|F(t, x)-F(t, y)|^{2}+|G(t, x)-G(t, y)|^{2} \leq \alpha\left(|x-y|^{2}\right)
$$

$\left(\tilde{H}_{2}\right)$ (Hölder-type condition on $\left.\tilde{F}, \tilde{G}\right):$ there exist $\tilde{\alpha} \in L S$ such that for all $\left(s_{1}, s_{2}\right) \in C_{2}(T), x, y \in R$,

$$
\left|\tilde{F}\left(s_{1}, s_{2}, x\right)-\tilde{F}\left(s_{1}, s_{2}, y\right)\right|^{2}+\left|\tilde{G}\left(s_{1}, s_{2}, x\right)-\tilde{G}\left(s_{1}, s_{2}, y\right)\right|^{2} \leq \tilde{\alpha}\left(|x-y|^{2}\right)
$$

$\left(H_{3}\right) \xi \in L^{2}\left(\Omega, \mathcal{F}_{0}, P\right)$.
Next for a process U and $\alpha>0$ we define

$$
\|U\|_{\alpha}=\sup _{s \neq t} \frac{\left|U_{t}-U_{s}\right|}{|t-s|^{\alpha}},\|U\|_{\alpha}=\|U\|_{\infty}+\|U\|_{\alpha}
$$

Theorem 2.1 Suppose $\left(H_{1}\right)-\left(H_{3}\right),\left(\tilde{H}_{1}\right),\left(\tilde{H}_{2}\right)$ are satisfied. Let $\left\{X_{t}^{n}\right\}_{t \in[0, T]}$ be the successive approximations defined by

$$
\begin{gathered}
X_{t}^{0}=\xi, X_{t}^{n+1}=\xi+\int_{0}^{t} F\left(s, X_{s}^{n}\right) d s+\int_{0}^{t} G\left(s, X_{s}^{n}\right) d W_{s}+ \\
\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T
\end{gathered}
$$

(a) Then the equation (2.1) has a pathwise unique solution $\left\{X_{t}\right\}_{t \in[0, T]}$ such that

$$
\begin{equation*}
E\left(\sup _{t \leq T}\left|X_{t}\right|^{2}\right)<\infty \tag{2.2}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left(\sup _{t \leq T}\left|X_{t}^{n}-X_{t}\right|^{2}\right)=0 \tag{2.3}
\end{equation*}
$$

(b) In addition assume that one of the following two conditions is satisfied:
(b_{1}) For some $r>1, E\left(|\xi|^{2 r}\right)<\infty$, either,
$\left(b_{2}\right)$ There exists $\alpha \in(0,1)$ and a positive constant K_{1} such that

$$
\begin{equation*}
\left|\tilde{G}\left(s_{1}, t_{2}, x\right)-\tilde{G}\left(s_{1}, t_{1}, x\right)\right| \leq K\left|t_{1}-t_{2}\right|^{\alpha} \text { for all } s_{1} \leq t_{i} \leq T \text {. } \tag{2.4}
\end{equation*}
$$

Then for every $0<\beta<\min \left(\frac{1}{2}, 2 \alpha\right)$ we have $\left\|X^{n}-X\right\|_{\beta} \xrightarrow[n \rightarrow \infty]{p} 0$.

Proof. (a) Existence. By standart computation it follows that

$$
\begin{equation*}
\sup _{n} E\left(\sup _{t \leq T}\left|X_{t}^{n}\right|^{2}\right)<\infty . \tag{2.5}
\end{equation*}
$$

Next from $\left(H_{2}\right),\left(\tilde{H}_{2}\right)$ we deduce

$$
\begin{gathered}
g_{m, n}(t):=E\left(\sup _{s \leq t}\left|X_{s}^{m}-X_{s}^{n}\right|^{2}\right) \leq \int_{0}^{t}(\alpha+\tilde{\alpha})\left(g_{m, n}(s)\right) d s, \\
\varlimsup_{m, n \rightarrow \infty} g_{m, n}(t) \leq \int_{0}^{t}(\alpha+\tilde{\alpha})\left(\varlimsup_{m, n \rightarrow \infty} g_{m, n}(s)\right) d s,
\end{gathered}
$$

where from $\overline{\lim }_{m, n \rightarrow \infty} g_{m, n}(t)=0$.
Therefore there exists a continuous process $\left\{X_{t}\right\}_{t \in[0, T]}$ such that

$$
\lim _{n \rightarrow \infty} E\left(\sup _{t \leq T}\left|X_{t}^{n}-X_{t}\right|^{2}\right)=0
$$

It is clear that X is a solution of (2.1).
Uniqueness. If $\left\{X_{t}\right\}_{t \in[0, T]},\left\{Y_{t}\right\}_{t \in[0, T]}$ are solutions of (2.1) and denote $\delta(t)=$ $E\left(\left|X_{t}-Y_{t}\right|^{2}\right)$ then by $\left(H_{2}\right),\left(\tilde{H}_{2}\right)$ we have

$$
\delta(t) \leq \int_{0}^{t}(\alpha+\tilde{\alpha})(\delta(s)) d s
$$

and this implies $\delta(t)=0$.
(b) Assume $\left(b_{1}\right)$ is satisfied. Then in a standard manner it follows

$$
\sup _{n} E\left(\sup _{t \leq T}\left|X_{t}^{n}\right|^{2 r}\right)<\infty,
$$

where from we get

$$
E\left(\left|X_{t}^{n}-X_{s}^{n}\right|^{2 r}\right) \leq K_{2}(t-s)^{r}, E\left(\left|X_{t}-X_{s}\right|^{2 r}\right) \leq K_{2}(t-s)^{r},
$$

and, if we define $Y^{n}=X^{n}-X$, the previuos inequalities imply

$$
\begin{equation*}
E\left(\left|Y_{t}^{n}-Y_{s}^{n}\right|^{2 r}\right) \leq K_{3}(t-s)^{r} . \tag{2.6}
\end{equation*}
$$

As in [1], (2.6) and the Garcia-Rodemich-Rumsey criterion imply the result (see also Lemma 8.27 of [15]).
Now assume that $\left(b_{2}\right)$ hold. Choose $\eta>0$ such that $\beta+\eta<\frac{1}{2}$. Taking into account the previous result from (a) all we need to show is that $\left[Y^{n}\right]_{\beta} \xrightarrow{p} 0$, or since for all $\mu, \varepsilon>0$,

$$
P\left(\left[Y^{n}\right]_{\beta}>\varepsilon\right) \leq P\left(\left[Y^{n}\right]_{\beta+\mu}>\varepsilon \mu^{-\eta}\right)+2 P\left(\left\|X^{n}-X\right\|_{\infty}>\varepsilon \mu^{\beta}\right)
$$

to show that

$$
\lim _{M \rightarrow \infty} \sup _{n} P\left(\left[Y^{n}\right]_{\theta}>M\right)=0, \forall 0<\theta<\min \left(\frac{1}{2}, 2 \alpha\right)
$$

By using (2.2), (2.5) we obtain

$$
\begin{gathered}
P\left(\left[Y^{n}\right]_{\theta}>M\right) \leq P\left(\left\|X^{n}\right\|_{\infty}>M_{1}\right)+P\left(\|X\|_{\infty}>M_{1}\right)+ \\
P\left(\left[Y^{n}\right]_{\theta}>M,\left\|X^{n}\right\|_{\infty} \leq M_{1},\|X\|_{\infty} \leq M_{1}\right) \leq \\
\frac{K_{3}}{M_{1}^{2}}+P\left(\left[Y^{n}\right]_{\theta}>M,\left\|X^{n}\right\|_{\infty} \leq M_{1},\|X\|_{\infty} \leq M_{1}\right)
\end{gathered}
$$

so we have to prove that

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \sup _{n} P\left(\left[Y^{n}\right]_{\theta}>M,\left\|X^{n}\right\|_{\infty} \leq M_{1},\|X\|_{\infty} \leq M_{1}\right)=0, \forall M_{1}>0 \tag{2.7}
\end{equation*}
$$

Denote $A=\left\{\left\|X^{n}\right\|_{\infty} \leq M_{1},\|X\|_{\infty} \leq M_{1}\right\}$. Then we have

$$
\begin{aligned}
& P\left(\left[Y^{n}\right]_{\theta}>M, A\right) \leq P\left(\left[\int_{0}\left(G\left(s, X_{s}^{n}\right)-G\left(s, X_{s}\right)\right) d W_{s}\right]_{\theta}>\frac{M-K_{4} \sqrt{1+M_{1}^{2}}}{2}, A\right)+ \\
& P\left(\left[\int_{C_{2}(.)}\left(\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right)-\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}\right]_{\theta}>\frac{M-K_{4} \sqrt{1+M_{1}^{2}}}{2}, A\right),
\end{aligned}
$$

and hence (2.7) follows if we prove that

$$
\begin{align*}
\lim _{M \rightarrow \infty} \sup _{n} P\left(\left[\int_{0}\left(G\left(s, X_{s}^{n}\right)-G\left(s, X_{s}\right)\right) d W_{s}\right]_{\theta}>M, A\right)=0 \tag{2.8}\\
\lim _{M \rightarrow \infty} \sup _{n} P\left(\left[\int_{C_{2}(.)}\left(\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right)-\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}\right]_{\theta}>M, A\right)=0 . \tag{2.9}
\end{align*}
$$

On the set A we have

$$
\left|G\left(s, X_{s}^{n}\right)-G\left(s, X_{s}\right)\right| \leq K_{5}\left(1+\left\|X^{n}\right\|_{\infty}+\|X\|_{\infty}\right) \leq K_{5}\left(1+2 M_{1}\right)
$$

and similarly

$$
\left|\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right)-\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}\right)\right| \leq K_{5}\left(1+2 M_{1}\right)
$$

¿From Lemma 10.2.2 of [8] it follows that on A,

$$
\left[\int_{0}^{\cdot}\left(G\left(s, X_{s}^{n}\right)-G\left(s, X_{s}\right)\right) d W_{s}\right]_{\theta} \leq K_{6} \zeta_{n}
$$

where $E\left(\zeta_{n} 1_{A}\right) \leq K_{7} T^{2}$. Therefore

$$
\begin{gathered}
P\left(\left[\int_{0}\left(G\left(s, X_{s}^{n}\right)-G\left(s, X_{s}\right)\right) d W_{s}\right]_{\theta}>M, A\right) \leq \\
P\left(A, \zeta_{n}>\frac{M}{K_{6}}\right) \leq \frac{K_{6} E\left(\zeta_{n}\right)}{M} \leq \frac{K_{8}}{M} \underset{M \rightarrow \infty}{\longrightarrow} 0, \text { uniformly in } n .
\end{gathered}
$$

Next define

$$
I_{n}(t)=\int_{0}^{t}\left(\tilde{G}\left(s_{1}, t, X_{s_{1}}^{n}\right)-\tilde{G}\left(s_{1}, t, X_{s_{1}}\right)\right) d \tilde{W}_{s_{1}}
$$

Then

$$
\begin{gather*}
P\left(\left[\int_{C_{2}(.)}\left(\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right)-\tilde{G}\left(s_{1}, s_{2}, X_{s_{1}}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}\right]_{\theta}>M, A\right) \leq \\
P\left(A,\left\|I_{n}\right\|_{\infty} \leq M_{2},\left[\int_{0} I_{n}(s) d \tilde{W}_{s}\right]_{\theta}>M\right)+P\left(\left\|I_{n}\right\|_{\infty}>M_{2}, A\right) . \tag{2.10}
\end{gather*}
$$

Now from Theorem 2 of [11] or Theorem 2.4 of [12] it follows

$$
\begin{equation*}
P\left(\left\|I_{n}\right\|_{\infty}>M_{2}, A\right) \leq \exp \left\{-K_{8}\left(M_{1}\right) M_{2}^{2}\right\} \tag{2.11}
\end{equation*}
$$

and from Lemma 10.2.2 of [8]

$$
\begin{equation*}
P\left(A,\left\|I_{n}\right\|_{\infty} \leq M_{2},\left[\int_{0} I_{n}(s) d \tilde{W}_{s}\right]_{\theta}>M\right) \leq \frac{K_{9}\left(M_{1}, M_{2}\right)}{M} \tag{2.12}
\end{equation*}
$$

Finally from (2.10)-(2.12) we get (2.9).
Theorem 2.2 (Existence of weak solutions) Assume that ($F, G, \tilde{F}, \tilde{G}$) satisfy the hypotheses $\left(H_{1}\right),\left(H_{3}\right),\left(\tilde{H}_{1}\right)$. Moreover suppose that:
(i) For some $r>1, E\left(|\xi|^{2 r}\right)<\infty$.
(ii) $F, G, \tilde{F}, \tilde{G}$ are continuous in all variables.
(iii) There exists $\alpha \in(0,1)$ and a positive constant \bar{K} such that

$$
\left|\tilde{G}\left(s_{1}, t_{1}, x\right)-\tilde{G}\left(s_{1}, t_{2}, x\right)\right| \leq \bar{K}\left|t_{1}-t_{2}\right|^{\alpha}, \forall s_{1} \leq t_{i} \leq T, x \in R .
$$

Then (2.1) has a weak solution.

We need the following convergence result for double stochastic integrals.
Lemma 2.3. Let $\left\{V_{t}^{n}\right\}_{t \in[0, T]},\left\{V_{t}\right\}_{t \in[0, T]}$ be Brownian motions and $\left\{h_{n}\left(s_{1}, s_{2}\right)\right\}_{\left(s_{1}, s_{2}\right) \in C_{2}(T)},\left\{h\left(s_{1}, s_{2}\right)\right\}_{\left(s_{1}, s_{2}\right) \in C_{2}(T)}$ be predictable processes such that

$$
E\left(\int_{C_{2}(T)}\left|h_{n}\left(s_{1}, s_{2}\right)\right|^{2} d s_{1} d s_{2}\right)<\infty, E\left(\int_{C_{2}(T)}\left|h\left(s_{1}, s_{2}\right)\right|^{2} d s_{1} d s_{2}\right)<\infty
$$

Assume that:
(1) For each $t, V_{t}^{n} \xrightarrow{p} V_{t}$.
(2) For each $\left(s_{1}, s_{2}\right) \in C_{2}(T), h_{n}\left(s_{1}, s_{2}\right) \xrightarrow{p} h\left(s_{1}, s_{2}\right)$ and

$$
\begin{equation*}
\lim _{C \rightarrow \infty} \sup _{n} P\left(\left\|h_{n}\right\|_{\infty}>C\right)=0 \tag{2.13}
\end{equation*}
$$

(3) There exists $\alpha \in(0,2]$ and for every n there exists a nonnegative random variable ξ_{n} such that

$$
\begin{gather*}
\lim _{C \rightarrow \infty} \sup _{n} P\left(\xi_{n}>C\right)=0 \tag{2.14}\\
\int_{0}^{t_{1} \wedge t_{2}}\left|h_{n}\left(s_{1}, t_{1}\right)-h_{n}\left(s_{1}, t_{2}\right)\right|^{2} d s_{1} \leq \xi_{n}\left|t_{1}-t_{2}\right|^{\alpha}, \forall 0 \leq t_{i} \leq T \tag{2.15}
\end{gather*}
$$

(4) For each $\varepsilon>0,0 \leq t \leq T$,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \sup _{\substack{\left|s_{1}-s_{2}\right| \leq h \\ 0 \leq s_{i} \leq t}} P\left(\left|h_{n}\left(s_{1}, t\right)-h_{n}\left(s_{2}, t\right)\right|>\varepsilon\right)=0 . \tag{2.16}
\end{equation*}
$$

Then

$$
\int_{C_{2}(T)} h_{n}\left(s_{1}, s_{2}\right) d V_{s_{1}}^{n} d V_{s_{2}}^{n} \xrightarrow{p} \int_{C_{2}(T)} h\left(s_{1}, s_{2}\right) d V_{s_{1}} d V_{s_{2}} .
$$

Proof. Define

$$
Z_{t}^{n}=\int_{0}^{t} h_{n}\left(s_{1}, t\right) d V_{s_{1}}^{n}, Z_{t}=\int_{0}^{t} h\left(s_{1}, t\right) d V_{s_{1}}
$$

Then

$$
\begin{gathered}
\int_{C_{2}(T)} h_{n}\left(s_{1}, s_{2}\right) d V_{s_{1}}^{n} d V_{s_{2}}^{n}=\int_{0}^{T} Z_{s}^{n} d V_{s}^{n} \\
\int_{C_{2}(T)} h\left(s_{1}, s_{2}\right) d V_{s_{1}} d V_{s_{2}}=\int_{0}^{T} Z_{s} d V_{s}
\end{gathered}
$$

By the convergence result for first order stochastic integrals due to Skorohod (see [14]-page 32) we have

$$
Z_{t}^{n} \xrightarrow{p} Z_{t}, \forall 0 \leq t \leq T .
$$

Define $A=\left\{\left\|h_{n}\right\|_{\infty} \leq C_{1}, \xi_{n} \leq C_{1}\right\}$. Then from (2.13)-(2.15) and Theorem 2 of [11] it follows

$$
\begin{gathered}
\lim _{C \rightarrow \infty} \sup _{n} P\left(\left\|Z^{n}\right\|_{\infty}>C\right) \leq P\left(\left\|Z^{n}\right\|_{\infty}>C, A\right)+ \\
P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+P\left(\xi_{n}>C_{1}\right) \leq \\
\exp \left\{-\gamma\left(C_{1}\right) C^{2}\right\}+P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+P\left(\xi_{n}>C_{1}\right) \longrightarrow 0,
\end{gathered}
$$

as $C \rightarrow \infty, C_{1} \rightarrow \infty$.

Next Lemma 10.2.2 of [8] yields

$$
\begin{equation*}
\left|Z_{t}^{n}-Z_{s}^{n}\right| \leq \eta_{n}|t-s|^{\alpha} \text { on } A, \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\sup _{n} E\left(1_{A} \eta_{n}\right)=C_{2}<\infty . \tag{2.18}
\end{equation*}
$$

Next by using (2.17), (2.18) we obtain
$P\left(\left\|Z_{t}^{n}-Z_{s}^{n}\right\|>\varepsilon\right) \leq P\left(\left\|Z_{t}^{n}-Z_{s}^{n}\right\|>\varepsilon, A\right)+P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+P\left(\xi_{n}>C_{1}\right) \leq$

$$
\begin{gathered}
P\left(1_{A} \eta_{n}>\varepsilon|t-s|^{-\alpha}\right)+P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+P\left(\xi_{n}>C_{1}\right) \leq \\
\frac{|t-s|^{\alpha}}{\varepsilon} E\left(1_{A} \eta_{n}\right)+P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+P\left(\xi_{n}>C_{1}\right) \leq \\
C_{2}|t-s|^{\alpha}+P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+P\left(\xi_{n}>C_{1}\right),
\end{gathered}
$$

so that

$$
\begin{gathered}
\varlimsup_{h \rightarrow 0} \sup _{n} \sup _{\substack{|t-s| \leq h \\
0 \leq s, t \leq T}} P\left(\left|Z_{t}^{n}-Z_{s}^{n}\right|>\varepsilon\right) \leq \\
\sup _{n} P\left(\left\|h_{n}\right\|_{\infty}>C_{1}\right)+\sup _{n} P\left(\xi_{n}>C_{1}\right) \longrightarrow 0 \text { as } C_{1} \rightarrow \infty .
\end{gathered}
$$

Applying once again the result of Skorohod ([14]-page 32) we obtain that

$$
\int_{0}^{T} Z_{s}^{n} d V_{s}^{n} \xrightarrow{p} \int_{0}^{T} Z_{s} d V_{s} .
$$

Proof of Theorem 2.2. Choose a sequence $\left(F_{n}, G_{n}, \tilde{F}_{n}, \tilde{G}_{n}\right)$ of continuous functions such that
$\left(i_{1}\right)\left(F_{n}, G_{n}, F_{n}, \tilde{G}_{n}\right)$ satisfy $\left(H_{1}\right),\left(\tilde{H}_{1}\right)$ uniformly with respect to n.
$\left(i_{2}\right)\left(F_{n}, G_{n}, \tilde{F}_{n}, \tilde{G}_{n}\right)$ are Lipschitz in the last variable.
$\left(i_{3}\right)$ For each s, s_{1}, s_{2},

$$
\begin{gathered}
F_{n}(s, x) \longrightarrow F(s, x), G_{n}(s, x) \longrightarrow G(s, x), \\
\tilde{F}_{n}\left(s_{1}, s_{2}, x\right) \longrightarrow \tilde{F}\left(s_{1}, s_{2}, x\right), \tilde{G}_{n}\left(s_{1}, s_{2}, x\right) \longrightarrow \tilde{G}\left(s_{1}, s_{2}, x\right),
\end{gathered}
$$

uniformly for x in compact sets.
Let (by Theorem 2.1) X_{t}^{n} be the strong solution of

$$
\begin{gathered}
X_{t}^{n}=\xi+\int_{0}^{t} F_{n}\left(s, X_{s}^{n}\right) d s+\int_{0}^{t} G_{n}\left(s, X_{s}^{n}\right) d W_{s}+ \\
\int_{C_{2}(t)} \tilde{F}_{n}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}_{n}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T .
\end{gathered}
$$

¿From (i), $\left(H_{1}\right),\left(\tilde{H}_{1}\right)$ we deduce

$$
\sup _{n} E\left(\left|X_{t}^{n}\right|^{2 r}\right)<\infty
$$

and this implies

$$
E\left(\left|X_{t}^{n}-X_{s}^{n}\right|^{2 r}\right) \leq K_{1}|t-s|^{r}, \forall n, s, t
$$

Therefore on some probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P})$ there exist $\left(\hat{\xi}_{n}, \hat{X}^{n}, \hat{W}^{n}, \tilde{V}^{n}\right)$, $(\hat{\xi}, \hat{X}, \hat{W}, \tilde{V})$ such that:
(a) For every n, the laws of $\left(\hat{\xi}_{n}, \hat{X}^{n}, \hat{W}^{n}, \tilde{V}^{n}\right)$ and $\left(\xi, X^{n}, W, \hat{W}\right)$ coincide.
(b) For some subsequence (n_{k}) (for simplicity we assume $n_{k}=k$ for all k),

$$
\hat{\xi}_{n} \xrightarrow{\text { a.s. }} \xi, \hat{X}^{n} \xrightarrow{\text { a.s. }} \hat{X}, \hat{W}^{n} \xrightarrow{\text { a.s. }} \hat{W}, \tilde{V}^{n} \xrightarrow{\text { a.s. }} \tilde{V},
$$

uniformly on every compact interval.
If we define

$$
\hat{\mathcal{F}}_{t}^{n}=\mathcal{B}\left(\hat{\xi}_{n}, \hat{X}_{s}^{n}, \hat{W}_{s}^{n}, \tilde{V}_{s}^{n}: s \leq t\right), \hat{\mathcal{F}}_{t}=\mathcal{B}\left(\hat{\xi}, \hat{X}_{s}, \hat{W}_{s}, \tilde{V}_{s}: s \leq t\right)
$$

then it is clear that $\hat{W}_{t}^{n}, \tilde{V}^{n}$ (resp. $\left.\hat{W}_{t}, \tilde{V}\right)$ are $\hat{\mathcal{F}}_{t}^{n}$ (resp. $\hat{\mathcal{F}}_{t}$) Brownian motions.
Also we have (we omit the details)

$$
\begin{gather*}
\hat{X}_{t}^{n}=\hat{\xi}_{n}+\int_{0}^{t} F_{n}\left(s, \hat{X}_{s}^{n}\right) d s+\int_{0}^{t} G_{n}\left(s, \hat{X}_{s}^{n}\right) d \hat{W}_{s}^{n}+ \\
\int_{C_{2}(t)} \tilde{F}_{n}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}^{n}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}_{n}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}^{n}\right) d \tilde{V}_{s_{1}}^{n} d \tilde{V}_{s_{2}}^{n}, 0 \leq t \leq T \tag{2.19}
\end{gather*}
$$

Next, it is easy to see that for each t,

$$
\begin{gathered}
\int_{0}^{t} F_{n}\left(s, \hat{X}_{s}^{n}\right) d s \xrightarrow{p} \int_{0}^{t} F\left(s, \hat{X}_{s}\right) d s \\
\int_{C_{2}(t)} \tilde{F}_{n}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}^{n}\right) d s_{1} d s_{2} \xrightarrow{p} \int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}\right) d s_{1} d s_{2},
\end{gathered}
$$

and by [14], page 32,

$$
\int_{0}^{t} G_{n}\left(s, \hat{X}_{s}^{n}\right) d \hat{W}_{s}^{n} \xrightarrow{p} \int_{0}^{t} G\left(s, \hat{X}_{s}\right) d \hat{W}_{s}^{n}
$$

Finally by Lemma 2.3 we also have

$$
\int_{C_{2}(t)} \tilde{G}_{n}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}^{n}\right) d \tilde{V}_{s_{1}}^{n} d \tilde{V}_{s_{2}}^{n} \xrightarrow{p} \int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}\right) d \tilde{V}_{s_{1}} d \tilde{V}_{s_{2}} .
$$

It follows we can pass to the limit in (2.19) and obtain that

$$
\begin{gathered}
\hat{X}_{t}=\hat{\xi}+\int_{0}^{t} F\left(s, \hat{X}_{s}\right) d s+\int_{0}^{t} G\left(s, \hat{X}_{s}\right) d \hat{W}_{s}+ \\
\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, \hat{X}_{s_{1}}\right) d \tilde{V}_{s_{1}} d \tilde{V}_{s_{2}}, 0 \leq t \leq T,
\end{gathered}
$$

i.e., \hat{X} is a weak solution of (2.1).

3 Fractional Step Method. A Comparison Result

In this section we assume that:
(i) The filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ is of the form $\mathcal{F}_{t}=F_{t} \vee \tilde{F}_{t}$ and F_{t}, \tilde{F}_{t} are independent for all $t \geq 0$.
(ii) W_{t} is F_{t}-Brownian motion and \tilde{W}_{t} is \tilde{F}_{t}-Brownian motion.

We introduce now the fractional step approximations associated to (2.1).
Let $\Delta: 0=t_{0}<t_{1}<\ldots . t_{n}=T$ be a partition of $[0, T]$ with the norm $\|\Delta\|=\max _{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)$.
We define the fractional step approximations as the processes $\left\{Z_{\Delta}(t)\right\}_{0 \leq t \leq T}$, $\left\{Y_{\Delta}(t)\right\}_{0 \leq t \leq T}$ defined by the following recursive procedure:
$Z_{\Delta}(0)=\xi$ and for $t \in\left[t_{i-1}, t_{i}\right), i \geq 1$,

$$
\left\{\begin{array}{l}
Z_{\Delta}(t)=Z_{\Delta}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t} F\left(s, Z_{\Delta}(s)\right) d s+\int_{t_{i-1}}^{t} G\left(s, Z_{\Delta}(s)\right) d W_{s} \tag{3.20}\\
Y_{\Delta}\left(t_{i-1}\right)=Z_{\Delta}\left(t_{i}-\right)
\end{array}\right.
$$

$$
\left\{\begin{align*}
Y_{\Delta}(t) & =Y_{\Delta}\left(t_{i-1}\right)+\int_{t_{i-1}}^{t} \int_{0}^{t_{i-1}} \tilde{F}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d s_{1} d s_{2} \tag{3.21}\\
& +\int_{C_{2}\left(t_{i-1}, t\right)} \tilde{F}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d s_{1} d s_{2} \\
& +\int_{t_{i-1}}^{t} \int_{0}^{t_{i-1}} \tilde{G}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}} \\
& +\int_{C_{2}\left(t_{i-1}, t\right)} \tilde{G}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}} \\
Z_{\Delta}\left(t_{i}\right) & =Y_{\Delta}\left(t_{i}-\right) .
\end{align*}\right.
$$

Lemma 3.1 (see [13]) Let $0 \leq \delta<T, b, c>0$, with $4 c \delta<1$ and f : $[0, T] \longrightarrow R_{+}$be such that

$$
f(t+s)-f(t) \leq(s+\delta)(b+c f(t+s)), \quad \forall s, t
$$

Then

$$
f(t) \leq\left(f(0)+\frac{b}{c}\right) e^{4 c t+1}-\frac{b}{c} .
$$

Proposition 3.2 (a) For every $t \in\left[t_{i-1}, t_{i}\right), i \geq 1$,the fractional step approximations $\left(Z_{\Delta}(t), Y_{\Delta}(t)\right)$ is solution of the system of double stochastic equations

$$
\left\{\begin{align*}
Z_{\Delta}(t) & =\xi+\int_{0}^{t} F\left(s, Z_{\Delta}(s)\right) d s+\int_{0}^{t} G\left(s, Z_{\Delta}(s)\right) d W_{s} \\
& +\int_{C_{2}\left(t_{i}-1\right)} \tilde{F}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d s_{1} d s_{2}+\int_{C_{2}\left(t_{i-1}\right)} \tilde{G}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}} \tag{3.22}\\
Y_{\Delta}(t) & =\xi+\int_{0}^{t_{i}} F\left(s, Z_{\Delta}(s)\right) d s+\int_{0}^{t_{i}} G\left(s, Z_{\Delta}(s)\right) d W_{s} \\
& +\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}},
\end{align*}\right.
$$

and $Z_{\Delta}(t)\left(\right.$ resp. $\left.\quad Y_{\Delta}(t)\right)$ is $\mathcal{F}_{t t_{i-1}}=F_{t} \vee \tilde{F}_{t_{i-1}}\left(\right.$ resp. $\left.\mathcal{F}_{t_{i} t}=F_{t_{i}} \vee \tilde{F}_{t}\right)$ measurable.
(b) There exist $\delta_{0}>0$ and constants $\gamma_{i}=\gamma_{i}\left(E\left(|\xi|^{2}\right), T, K, \tilde{K}\right)<\infty, i=$ $1,2,3$, such that for every $\|\Delta\| \leq \delta_{0}$,

$$
\begin{gather*}
E\left(\sup _{0 \leq t \leq T}\left|Z_{\Delta}(t)\right|^{2}\right) \leq \gamma_{1}, \tag{3.23}\\
E\left(\sup _{0 \leq t \leq T}\left|Y_{\Delta}(t)\right|^{2}\right) \leq \gamma_{2}, \tag{3.24}\\
\sup _{0 \leq t \leq T} E\left(\left|Z_{\Delta}(t)-Y_{\Delta}(t)\right|^{2}\right) \leq \gamma_{3}\|\Delta\| . \tag{3.25}
\end{gather*}
$$

Proof. Define for $t \in\left[t_{i-1}, t_{i}\right)$

$$
\begin{gathered}
f_{\Delta}(t)=C_{1}\left\{E\left(|\xi|^{2}\right)+\int_{0}^{t_{i}} E\left(\left|F\left(s, Z_{\Delta}(s)\right)\right|^{2}+\left|G\left(s, Z_{\Delta}(s)\right)\right|^{2}\right) d s+\right. \\
\left.\int_{C_{2}\left(t_{i}\right)} E\left(\left|\tilde{F}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right)\right|^{2}+\left|\tilde{G}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right)\right|^{2}\right) d s_{1} d s_{2}\right\}
\end{gathered}
$$

where C_{1} is a constant sufficiently large, which do not depent on Δ.

Of course we have

$$
\begin{equation*}
E\left(\sup _{0 \leq s \leq t}\left|Z_{\Delta}(s)\right|^{2}\right) \leq f_{\Delta}(t), E\left(\sup _{0 \leq s \leq t}\left|Y_{\Delta}(s)\right|^{2}\right) \leq f_{\Delta}(t) \tag{3.26}
\end{equation*}
$$

Now let $t \in\left[t_{i-1}, t_{i}\right), t+s \in\left[t_{j-1}, t_{j}\right), i \leq j$.
If $i=j$ then $f_{\Delta}(t+s)-f_{\Delta}(t)=0$. If $i<j$ then by $\left(H_{1}\right),\left(\tilde{H}_{1}\right)$ and (3.26) we have for some constants $a_{1}, a_{2}, a_{3}>0$, which are independent of Δ,

$$
\begin{gathered}
f_{\Delta}(t+s)-f_{\Delta}(t) \leq \int_{t_{i}}^{t_{j}}\left(a_{1}+a_{2} f_{\Delta}\left(t_{j-1}\right) d s \leq\right. \\
\int_{C_{2}\left(t_{j}\right) \backslash C_{2}\left(t_{i}\right)}\left(a_{1}+a_{2} f_{\Delta}\left(t_{j-1}\right) d s_{1} d s_{2} \leq\right. \\
a_{3}\left(a_{1}+a_{2} f_{\Delta}(t+s)\left(t_{j}-t_{i}+\lambda\left(C_{2}\left(t_{j}\right) \backslash C_{2}\left(t_{i}\right)\right)\right) \leq\right. \\
a_{3}\left(a_{1}+a_{2} f_{\Delta}(t+s)(s+\|\Delta\|) .\right.
\end{gathered}
$$

Then by Lemma 3.1 we get (3.23), (3.24).
Next from (3.22), ($\left.\tilde{H}_{1}\right),\left(\tilde{H}_{2}\right)$ and (3.23), (3.24) it follows easily (3.25).
Theorem 3.3 Assume that $\left(H_{1}\right)-\left(H_{3}\right),\left(\tilde{H}_{1}\right),\left(\tilde{H}_{2}\right)$ are satisfied. If $\left\{X_{t}\right\}_{0 \leq t \leq T}$ is the unique solution of (2.1) then

$$
\begin{align*}
& \lim _{\|\Delta\| \longrightarrow 0} \sup _{0 \leq t \leq T} E\left(\left|Z_{\Delta}(t)-X_{t}\right|^{2}\right)=0, \tag{3.27}\\
& \lim _{\|\Delta\| \longrightarrow 0} \sup _{0 \leq t \leq T} E\left(\left|Y_{\Delta}(t)-X_{t}\right|^{2}\right)=0 . \tag{3.28}
\end{align*}
$$

Proof. Define
$\tilde{F}\left(s_{1}, s_{2}, Z_{\Delta}, Y_{\Delta}\right)= \begin{cases}\tilde{F}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)-\tilde{F}\left(s_{1}, s_{2}, Z_{\Delta}\left(s_{1}\right),\right.\right. & \left(s_{1}, s_{2}\right) \in C_{2}\left(t_{i-1}\right) \\ -\tilde{F}\left(s_{1}, s_{2}, Z_{\Delta}\left(s_{1}\right),\right. & \left(s_{1}, s_{2}\right) \in C_{2}\left(t_{i-1}, t_{i}\right) \cup R_{\Delta},\end{cases}$
and $\tilde{G}\left(s_{1}, s_{2}, Z_{\Delta}, Y_{\Delta}\right)$ similarly, where $R_{\Delta}=\left[0, t_{i-1}\right) \times\left[t_{i-1}, t_{i}\right)$.
Then we have the equality

$$
Z_{\Delta}(t)=\int_{0}^{t} F\left(s, Z_{\Delta}(s)\right) d s+\int_{0}^{t} G\left(s, Z_{\Delta}(s)\right) d W_{s}+
$$

$$
\begin{equation*}
\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, Z_{\Delta}\left(s_{1}\right)\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, Y_{\Delta}\left(s_{1}\right)\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}+\gamma_{\Delta}(t) \tag{3.29}
\end{equation*}
$$

where

$$
\gamma_{\Delta}(t)=\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, Z_{\Delta}, Y_{\Delta}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}, Z_{\Delta}, Y_{\Delta}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}
$$

¿From (2.1) and (3.29) it follows
$E\left(\left|Z_{\Delta}(t)-X_{t}\right|^{2}\right) \leq C_{2}\left\{E\left(\left|\gamma_{\Delta}(t)\right|^{2}\right)+\int_{0}^{t}(\alpha+\tilde{\alpha})\left(E\left(\left|Z_{\Delta}(s)-X_{s}\right|^{2}\right)\right) d s\right\}$
and $\left(H_{1}\right),\left(\tilde{H}_{1}\right),(3.23)-(3.25)$ yield for $\|\Delta\| \leq \delta_{0}$,

$$
\sup _{t \leq T} E\left(\left|\gamma_{\Delta}(t)\right|^{2}\right) \leq C_{3}\|\Delta\|
$$

¿From (3.30) and Gronwall's lemma we deduce

$$
g(t):=\varlimsup_{\|\Delta\| \rightarrow 0} \sup _{s \leq t} E\left(\left|Z_{\Delta}(s)-X_{s}\right|^{2}\right) \leq C_{4} \int_{0}^{t}(\alpha+\tilde{\alpha})(E(g(s))) d s
$$

and hence $g(t) \equiv 0$.
Definition 3.4. Let $\left(F_{i}, G_{i}\right)_{i=1,2}$ satisfy $\left(H_{1}\right),\left(H_{2}\right),\left(\tilde{H}_{1}\right),\left(\tilde{H}_{2}\right)$.We say that the comparison principle hold for $\left(F_{i}, G_{i}\right)_{i=1,2}$ if given two initial conditions $\xi_{i}, i=1,2$, (ξ_{i} are \mathcal{F}_{0}-measurable) with $\xi_{1} \leq \xi_{2}$ a.s. and strong solutions $\left\{X_{i}(t)\right\}$ of the Itô equations

$$
X_{i}(t)=\xi_{i}+\int_{0}^{t} F_{i}\left(s, X_{i}(s)\right) d s+\int_{0}^{t} G_{i}\left(s, X_{i}(s)\right) d W_{s}, 0 \leq t \leq T
$$

then $X_{1}(t) \leq X_{2}(t)$ a.s. for every $t \geq 0$.
Theorem 3.5 (comparison). Let $\left(\xi_{i}, F_{i}, G_{i}\right)_{i=1,2}$ satisfy the hypotheses $\left(H_{1}\right)-$ $\left(H_{3}\right),\left(\tilde{H}_{1}\right),\left(\tilde{H}_{2}\right)$ and let $\tilde{G}\left(s_{1}, s_{2}\right): C_{2}(T) \longrightarrow R$ be a measurable and bounded function.
Let $\left\{X_{i}(t)\right\}$ be the unique solution of the double stochastic equation with additive double noise

$$
\begin{gather*}
X_{i}(t)=\xi_{i}+\int_{0}^{t} F_{i}\left(s, X_{i}(s)\right) d s+\int_{0}^{t} G_{i}\left(s, X_{i}(s)\right) d W_{s}+ \\
\int_{C_{2}(t)} \tilde{F}_{i}\left(s_{1}, s_{2}, X_{i}\left(s_{1}\right)\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T . \tag{3.31}
\end{gather*}
$$

Moreover suppose that:
(1) $\xi_{1} \leq \xi_{2}$ a.s..
(2) The comparison principle hold for $\left(F_{i}, G_{i}\right)_{i=1,2}$.
(3) $\tilde{F}_{1}\left(s_{1}, s_{2}, x\right) \leq \tilde{F}_{2}\left(s_{1}, s_{2}, y\right)$ if $x \leq y$, for all s_{i}.

Then $X_{1}(t) \leq X_{2}(t)$ a.s. for every $t \geq 0$.

Proof. By induction over the intervals $\left[t_{i-1}, t_{i}\right), i=1, n$, it is easily seen that the fractional step approximations satisfy

$$
Z_{1, \Delta}(t) \leq Z_{2, \Delta}(t), \quad Y_{1, \Delta}(t) \leq Y_{2, \Delta}(t), \quad P \text {-as for all } t
$$

and passing to the limit (by Theorem 3.2) we obtain the conclusion.

Remark 3.6 The comparison result given by the previous Theorem is more useful if for the first order Itô equation the comparison principle holds only for markovian coefficients and not for functional ones.
Comparison results for Itô equations can be found in [5] (and the references therein), [7], [9].
It should be interesting to extend the Theorem 3.5 to double stochastic Volterra equations, by using comparison results for first order stochastic Volterra equations as proven in [?], [17].

Theorem 3.7 Let (ξ, F, G) satisfy the hypotheses $\left(H_{1}\right)-\left(H_{3}\right),\left(\tilde{H}_{1}\right),\left(\tilde{H}_{2}\right)$ and let $\tilde{F}\left(s_{1}, s_{2}, x\right): C_{2}(T) \times R \longrightarrow R$ be bounded and continuous and $\tilde{G}\left(s_{1}, s_{2}\right): C_{2}(T) \longrightarrow R$ be a measurable and bounded function.
Then the double stochastic equation

$$
\begin{gather*}
X_{t}=\xi+\int_{0}^{t} F\left(s, X_{s}\right) d s+\int_{0}^{t} G\left(s, X_{s}\right) d W_{s}+ \\
\int_{C_{2}(t)} \tilde{F}\left(s_{1}, s_{2}, X_{s_{1}}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T, \tag{3.32}
\end{gather*}
$$

has a strong solution.

Proof. Choose a sequence $\tilde{F}_{n}\left(s_{1}, s_{2}, x\right)$ of continuous, bounded and Lipschitz in x, which converges decreasing to $\tilde{F}\left(s_{1}, s_{2}, x\right)$.
Let X_{t}^{n} be the strong solutions of

$$
\begin{gathered}
X_{t}^{n}=\xi+\int_{0}^{t} F\left(s, X_{s}^{n}\right) d s+\int_{0}^{t} G\left(s, X_{s}^{n}\right) d W_{s}+ \\
\int_{C_{2}(t)} \tilde{F}_{n}\left(s_{1}, s_{2}, X_{s_{1}}^{n}\right) d s_{1} d s_{2}+\int_{C_{2}(t)} \tilde{G}\left(s_{1}, s_{2}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T
\end{gathered}
$$

It is clear that the comparison principle hold for (F, G) (see for example [7]). Thenb by Theorem 3.5 we have

$$
X_{t}^{1} \geq X_{t}^{2} \geq \ldots \geq X_{t}^{n} \geq \ldots . . \quad P \text {-a.s for all } t \geq 0
$$

It is easily seen that $\lim _{n \rightarrow \infty} X_{t}^{n}=X_{t}$ is a solution of (3.32).

Next we give an example (Lemma 3.9) which shows that the comparison principle of Theorem 3.5 is not satisfied if the diffusion coefficient of the double stochastic integral depends on the state variable.
For $f \in L_{l o c}^{2}\left(R_{+}\right)$and $0 \leq t \leq T$ we define

$$
\begin{gathered}
Z_{t}^{f}=\exp \left\{\int_{0}^{t} f(s) d W_{s}-\frac{1}{2} \int_{0}^{t}|f(s)|^{2} d s\right\}, \\
\Phi_{t}^{f}=\exp \left\{-2 \int_{0}^{t} f(s) d W_{s}\right\} .
\end{gathered}
$$

Lemma 3.8 (a) The unique solution of the linear double stochastic equation

$$
\begin{equation*}
X_{t}^{f}=1+\int_{C_{2}(t)} f\left(s_{1}\right) f\left(s_{2}\right) X_{s_{1}}^{f} d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T \tag{3.33}
\end{equation*}
$$

is given by

$$
\begin{equation*}
X_{t}^{f}=\frac{1}{2} Z_{t}^{f}\left(1+\Phi_{t}^{f}\right)=\frac{1}{2}\left(Z_{t}^{f}+Z_{t}^{(-f)}\right) \tag{3.34}
\end{equation*}
$$

(b) If $\left(H_{t}\right)$ is a continuous semimartingale, then the unique solution of the double stochastic equation

$$
\begin{equation*}
X_{t}=H_{t}+\int_{C_{2}(t)} f\left(s_{1}\right) f\left(s_{2}\right) X_{s_{1}} d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}, 0 \leq t \leq T \tag{3.35}
\end{equation*}
$$

is given by

$$
\begin{gather*}
X_{t}=X_{t}^{f} H_{0}+X_{t}^{f} \int_{0}^{t} \frac{\left(X_{s}^{f} d H_{s}-f(s) d[H, \tilde{W}]_{s}\right)}{\left(\left|X_{s}^{f}\right|^{2}-\left|Y_{s}^{f}\right|^{2}\right)^{2}} \\
-Y_{t}^{f} \int_{0}^{t} \frac{Y_{s}^{f} d H_{s}}{\left(\left|X_{s}^{f}\right|^{2}-\left|Y_{s}^{f}\right|^{2}\right)^{2}}, \tag{3.36}\\
Y_{t}^{f}=X_{t}^{f}-1, \tag{3.37}
\end{gather*}
$$

where [.,.] denotes the quadratic variation.

Proof. (a) We have

$$
\begin{gathered}
\int_{C_{2}(t)} f\left(s_{1}\right) f\left(s_{2}\right) X_{s_{1}}^{f} d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}}=\int_{0}^{t} f\left(s_{2}\right)\left(\int_{0}^{s_{2}} f\left(s_{1}\right) X_{s_{1}}^{f} d \tilde{W}_{s_{1}}\right) d \tilde{W}_{s_{2}}= \\
\frac{1}{2} \int_{0}^{t} f\left(s_{2}\right)\left[\int_{0}^{s_{2}} f\left(s_{1}\right)\left(Z_{s_{1}}^{f}+Z_{s_{1}}^{(-f)}\right) d \tilde{W}_{s_{1}}\right] d \tilde{W}_{s_{2}}= \\
\frac{1}{2} \int_{0}^{t} f\left(s_{2}\right)\left(Z_{s_{2}}^{f}-1-Z_{s_{1}}^{(-f)}+1\right) d \tilde{W}_{s_{2}}= \\
\frac{1}{2}\left(Z_{t}^{f}-1+Z_{s_{1}}^{(-f)}-1\right)=X_{t}^{f}-1
\end{gathered}
$$

(b) The previous computation shows that

$$
Y_{t}^{f}=\int_{0}^{t} f\left(s_{1}\right) X_{s_{1}}^{f} d \tilde{W}_{s_{1}}=X_{t}^{f}-1 .
$$

Define

$$
\begin{gathered}
\tilde{f}(t)=\left(\begin{array}{ll}
f(t) & 0 \\
0 & f(t)
\end{array}\right), V_{t}=\left(\begin{array}{cc}
X_{t}^{f} & Y_{t}^{f} \\
Y_{t}^{f} & X_{t}^{f}
\end{array}\right), \\
U_{t}^{T}=\left(X_{t}^{f}, Y_{t}^{f}\right), \tilde{X}_{t}^{T}=\left(X_{t}, Y_{t}\right), \tilde{H}_{t}^{T}=\left(H_{t}, 0\right) .
\end{gathered}
$$

Then

$$
\begin{aligned}
& U_{t}=e_{1}+\int_{0}^{t} \tilde{f}(s) U_{s} d \tilde{W}_{s} \\
& \tilde{X}_{t}=\tilde{H}_{t}+\int_{0}^{t} \tilde{f}(s) \tilde{X}_{s} d \tilde{W}_{s}
\end{aligned}
$$

By Theorem 4 of [19] it follows that

$$
\begin{gathered}
\tilde{X}_{t}=V_{t} \tilde{H}_{0}+V_{t} \int_{0}^{t} V_{s}^{-1}\left(X_{s}^{f} d H_{s}-f(s) d[H, \tilde{W}]_{s}\right) \\
-Y_{t}^{f} \int_{0}^{t} \frac{Y_{s}^{f} d H_{s}}{\left(\left|X_{s}^{f}\right|^{2}-\left|Y_{s}^{f}\right|^{2}\right)^{2}}
\end{gathered}
$$

which implies (3.36).
We consider the following "pure" double stochastic equations

$$
\begin{gathered}
X_{1}(t)=1+\int_{C_{2}(t)} X_{1}\left(s_{1}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}} \\
X_{2}(t)=1+\frac{t^{2}}{2}+\int_{C_{2}(t)} X_{2}\left(s_{1}\right) d \tilde{W}_{s_{1}} d \tilde{W}_{s_{2}} .
\end{gathered}
$$

By Lemma 3.8 with $f \equiv 1, H_{t}=\frac{t^{2}}{2}$ we have

$$
\begin{gathered}
X_{1}(t)=\frac{1}{2}\left(Z_{t}^{1}+Z_{t}^{(-1)}\right), X_{2}(t)=X_{1}(t)+R(t), \\
R(t)=\int_{0}^{t} \frac{2 X^{1}(s) d s}{\left(2 X^{1}(s)-1\right)^{2}}+ \\
X_{1}(t) \int_{0}^{t} \frac{s d s}{\left(2 X^{1}(s)-1\right)^{2}}-\int_{0}^{t} \frac{s d s}{\left(2 X^{1}(s)-1\right)^{2}}
\end{gathered}
$$

Lemma 3.9 We have that

$$
\lim _{t \longrightarrow \infty} P(R(t)<0)=1
$$

Therefore the comparison principle is not satisfied for the solutions X_{1}, X_{2} (Note that in the present situation $\xi_{1}=\xi_{2}=1, \tilde{F}_{1}=0<\tilde{F}_{2}=1$).

Proof. It is known that

$$
\lim _{t \longrightarrow \infty} Z_{t}^{1}=\lim _{t \longrightarrow \infty} Z_{t}^{(-1)}=0
$$

and hence $\lim _{t \rightarrow \infty} X_{1}(t)=0$.
Define

$$
\delta(t)=\left[\int_{0}^{t} \frac{s X_{1}(s) d s}{\left(2 X^{1}(s)-1\right)^{2}}\right]\left[\int_{0}^{t} \frac{s d s}{\left(2 X^{1}(s)-1\right)^{2}}\right]^{-1}
$$

Then

$$
P(R(t)<0)=P\left(1-X^{1}(t)>\delta(t)\right) \text { a.s. }
$$

and all we need to show is that $\lim _{t \rightarrow \infty} \delta(t)=0$ a.s.
Obviously

$$
\lim _{t \longrightarrow \infty} \int_{0}^{t} \frac{s d s}{\left(2 X^{1}(s)-1\right)^{2}}=\infty \text { a.s. }
$$

Assume that

$$
\lim _{t \longrightarrow \infty} \int_{0}^{t} \frac{s d s}{\left(2 X^{1}(s)-1\right)^{2}}=\sigma
$$

If $\sigma<\infty$ then $\lim _{t \rightarrow \infty} \delta(t)=0$ and if $\sigma=0$ tha by l'Hôspital rule

$$
\lim _{t \longrightarrow \infty} \delta(t)=\lim _{t \longrightarrow \infty} X_{1}(t)=0
$$

References

[1] K. Bahlali, B. Mezerdi and Y. Ouknine: Pathwise uniqueness and approximation of solutions of stochastic differential equations. Sém. Prob. XXXII. L. N. Math. 1686, 166-187. Springer-Verlag, 1998.
[2] Ya.I. Belopolskaia and Z.I. Nagolkina: On a class of stochastic equations with partial derivatives. Teor. Veroyatnost. Primen. (1982), 551-559.
[3] A. Bensoussan, R. Glowinski and A. Rascanu: Approximation of some stochastic differential equations by the splitting up method. Applied Math. and Optim. 25 (1992), 81-106.
[4] G. Ferreira and P. Sundar: Comparison of solutions of stochastic Volterra equations. Bernoulli, 1999 (to appear).
[5] G. Ferreira and P. Sundar: Comparison of solutions of stochastic equations and applications. Stoch. Anal. Appl. 19(2) (2000), 211-229.
[6] N. Yu. Goncharuk and P. Kotelenez: Fractional step method for stochastic evolution equations. Stochastics and Stochastics Reports 73 (1998), 1-45.
[7] N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processes. North-Holland. Amsterdam (Kodansha Ltd., Tokyo), 1981.
[8] G. Kallianpur and J. Xiong : Stochastic Differential Equations in Infinite Dimensional Spaces. IMS Lecture Notes-Monograph Series, Vol. 26, 1995.
[9] A.V. Melnikov: Stochastic equations and Krylov's estimates for semimartingales. Stochastics 10(1983), 81-102.
[10] P.A. Meyer: Notions sur les intégrales multiples. Sém. Probab. X. L.N. Math. 511(1976), 321-331. Springer-Verlag.
[11] D. Nualart and C. Rovira: Large deviations for stochastic Volterra equations. Universitat de Barcelona. Mathematics Preprint Series .No. 247, 1998 (Bernoulli: to appear).
[12] C. Rovira and M. Sanz-Solé: Large deviations for stochastic Volterra equations in the plane. Potential Analysis (1998), 1-24.
[13] A. Rascanu and C. Tudor: Approximation of stochastic equations by the splitting up method. In : Qualitative Problems for Differential Equations and Control Theory (C. Corduneanu, ed.). Word Scientific Publishing Co., 1995, 277-287.
[14] A.V. Skorohod: Studies in the Theory of Random Processes. Addison Wesley, 1965.
[15] D.W. Stroock: Some Applications of Stochastic Calculus to Partial Differential Equations. Ecole d'été de Saint Flour XI. Lecture Notes in Math. 976. Springer Verlag, 1981.
[16] C. Tudor: Sur les solutions fortes des équations différentielles stochastiques. C.R. Acad. Sci. Paris 299, 4 (1984), 117-120.
[17] C. Tudor: A comparison theorem for stochastic equations with Volterra drifts. Annals of Probability 17 (4) (1989), 1541-1545.
[18] C. Tudor and M. Tudor : Approximate solutions for multiple stochastic equations with respect to semimartingales. Zeitschrift für Analysis und ihre Anwendungen 16 (3) (1997), 761-768.
[19] A. Upman: Sur le flot d'une équacion différentielle stochastiques. Sém. Prob. XVI, 1980/81. L.N. Math. 920. Springer-Verlag, 1982.

[^0]: *University of Bucharest and CIMAT, Department of Mathematics, 70109 Bucharest, Romania.
 ${ }^{\dagger}$ To whom correspondence should be addressed.
 ${ }^{\ddagger}$ Academy of Economical Studies, Department of Mathematics, 70167 Bucharest, Romania

